
Since drug resistance and toxicity limit the use of available antiprotozoal agents, it is important that new drugs be developed as soon as possible. In this study, the method by which several protozoa degrade 5'-methylthioadenosine (MTA) was shown to differ from MTA catabolism in human cells. To exploit this metabolic difference, two analogs of methylthioribose (MTR), an MTA catabolite, were synthesized and found to be cytocidal to Plasmodium falciparum, Giardia lamblia, and Ochromonas malhamensis in vitro. In contrast, these analogs had no effect on cultured mammalian cells. Analogs of MTR represent a potential new class of antiprotozoal drugs.
Phosphotransferases (Alcohol Group Acceptor), Thioglycosides, Phosphotransferases, Antiprotozoal Agents, Animals, Eukaryota
Phosphotransferases (Alcohol Group Acceptor), Thioglycosides, Phosphotransferases, Antiprotozoal Agents, Animals, Eukaryota
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
