
ABSTRACT Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2′- C -methyladenosine (7-deaza-2′-CMA), 2′- C -methyladenosine (2′-CMA), and 2′-C-methylcytidine (2′-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC 50 ]of 5.1 ± 0.4 μM for 7-deaza-2′-CMA, 7.1 ± 1.2 μM for 2′-CMA, and 14.2 ± 1.9 μM for 2′-CMC) and viral antigen production. Notably, 2′-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC 50 ] of ∼50 μM). The anti-TBEV effect of 2′-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2′-CMA showed no detectable cellular toxicity (CC 50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2′-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2′-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection.
Adenosine, Swine, DEPENDENT RNA-POLYMERASE, 3214 Pharmacology and pharmaceutical sciences, Cytidine, Virus Replication, Microbiology, Antiviral Agents, Tubercidin, Cell Line, Encephalitis Viruses, Tick-Borne, 2'-C-METHYLCYTIDINE, 1108 Medical Microbiology, SELECTIVE-INHIBITION, QUALITY, Animals, Humans, Pharmacology & Pharmacy, DENGUE-VIRUS, CELL-CULTURE, Science & Technology, ANALOGS, Nucleosides, INFECTED CHIMPANZEES, 3207 Medical microbiology, 3107 Microbiology, REPLICATION, 1115 Pharmacology and Pharmaceutical Sciences, Life Sciences & Biomedicine, ANTIVIRAL EFFICACY, 0605 Microbiology
Adenosine, Swine, DEPENDENT RNA-POLYMERASE, 3214 Pharmacology and pharmaceutical sciences, Cytidine, Virus Replication, Microbiology, Antiviral Agents, Tubercidin, Cell Line, Encephalitis Viruses, Tick-Borne, 2'-C-METHYLCYTIDINE, 1108 Medical Microbiology, SELECTIVE-INHIBITION, QUALITY, Animals, Humans, Pharmacology & Pharmacy, DENGUE-VIRUS, CELL-CULTURE, Science & Technology, ANALOGS, Nucleosides, INFECTED CHIMPANZEES, 3207 Medical microbiology, 3107 Microbiology, REPLICATION, 1115 Pharmacology and Pharmaceutical Sciences, Life Sciences & Biomedicine, ANTIVIRAL EFFICACY, 0605 Microbiology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 73 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
