Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ribosomal Proteins and Their Structural Transitions on and off the Ribosome

Authors: Anders Liljas; Natalia Davydova; Stanislav Nikonov; M. B. Garber; I. A. Eliseikina; N. Nevskaya; S.V. Tischenko; +1 Authors

Ribosomal Proteins and Their Structural Transitions on and off the Ribosome

Abstract

This chapter briefly reviews the structural data available, identifies similarities and differences, and illustrates some difficulties in using the structures of isolated components for insertion into the structures of whole ribosomes or subunits determined at lower resolution. An awareness of the possible differences in structure is necessary for an appreciation of the usefulness of structural studies of isolated components from a larger system such as the ribosome. The fraction of ribosomal proteins that has been structurally characterized is now more than one-third of all ribosomal proteins from bacteria. The chapter focuses on the domain arrangement of ribosomal proteins, and structural motifs. The extended conformations of some ribosomal proteins can be compared to proteins like calmodulin, which has a very elongated structure in one state while the α-helix that separates the two domains becomes bent in another state, with the effect that the protein adopts a more globular structure. L1 is a two-domain protein. The structure of L1 from Thermus thermophilus shows the two domains in close contact. Domain II can be described as an insert in domain I. Thus, there are two connections between the domains. The structural investigations have clearly established that the ribosomal proteins are formed by stable domains with significant hydrophobic cores that would hardly alter their structures upon binding to the ribosome. Several ribosomal proteins are built of two or more domains, sometimes with significant flexibility between them. Long, more or less flexible loops also frequently occur in ribosomal proteins.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?