
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )pmid: 11752675
The functions of ion channels can be regulated by their phosphorylation state. Protein kinases and protein phosphatases tightly control the activity of channels, thereby regulating the flow of ions across cell membranes. Channel proteins and kinases or phosphatases can associate directly or through intermediate adaptor proteins. An interaction domain termed the leucine zipper (LZ), once thought to be unique to some families of transcription factors, has been identified in channel proteins and their cognate binding proteins. MacFarlane and Levitan discuss what roles LZ-containing proteins might have in controlling channel function.
Leucine Zippers, Phosphotransferases, Phosphoprotein Phosphatases, Animals, Humans, Ion Channels, Signal Transduction
Leucine Zippers, Phosphotransferases, Phosphoprotein Phosphatases, Animals, Humans, Ion Channels, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
