
pmid: 35113708
Tooth enamel, renowned for its high stiffness, hardness, and viscoelasticity, is an ideal model for designing biomimetic materials, but accurate replication of complex hierarchical organization of high-performance biomaterials in scalable abiological composites is challenging. We engineered an enamel analog with the essential hierarchical structure at multiple scales through assembly of amorphous intergranular phase (AIP)–coated hydroxyapatite nanowires intertwined with polyvinyl alcohol. The nanocomposite simultaneously exhibited high stiffness, hardness, strength, viscoelasticity, and toughness, exceeding the properties of enamel and previously manufactured bulk enamel-inspired materials. The presence of AIP, polymer confinement, and strong interfacial adhesion are all needed for high mechanical performance. This multiscale design is suitable for scalable production of high-performance materials.
Nanowires, Elasticity, Nanocomposites, Biomimetic Materials, Hardness, Polyvinyl Alcohol, Flexural Strength, Materials Testing, Hydroxyapatites, Stress, Mechanical, Dental Enamel, Mechanical Phenomena
Nanowires, Elasticity, Nanocomposites, Biomimetic Materials, Hardness, Polyvinyl Alcohol, Flexural Strength, Materials Testing, Hydroxyapatites, Stress, Mechanical, Dental Enamel, Mechanical Phenomena
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 235 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
