
A reconfigurable spin ice Spin ices, magnetic systems in which local spins respect the so-called ice rules, can occur in natural materials or be engineered in patterned arrays. King et al . used superconducting qubits to implement a two-dimensional artificial spin ice. By changing the strength and ratio of spin couplings, the researchers were able to access a variety of ground states. Arranging the boundary spins in an antiferromagnetic configuration and then flipping one of those spins generated a magnetic monopole in the system’s interior. —JS
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
