
pmid: 26680163
A, T, G, C: the alphabet code for the nucleotides that are the building blocks of life. Minor, but consequential, changes in this DNA coding can change gene function. Researchers have long sought better ways to edit the genetic code in cultured cells and laboratory organisms to silence, activate, or change targeted genes to gain a better understanding of their roles. This, in turn, could open the door to beneficial applications, from ecological to agricultural to biomedical. Over the years, several editing methods have been developed, but they have suffered from a lack of specificity, difficulty in assembling the molecular constituents, or concerns about off-target effects. Recently, accomplishments in genome editing across biological disciplines have been so remarkable that the method known as clustered regularly interspaced short palindromic repeats—or CRISPR—is Science 's 2015 Breakthrough of the Year (see p. 1456).
Genome, Gene Targeting, Animals, Humans, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Genetic Engineering
Genome, Gene Targeting, Animals, Humans, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Genetic Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 71 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
