Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
License: CC BY
Data sources: UnpayWall
Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
Science
Other literature type . 2016
versions View all 2 versions
addClaim

Breakthrough to genome editing

Authors: Marcia, McNutt;

Breakthrough to genome editing

Abstract

A, T, G, C: the alphabet code for the nucleotides that are the building blocks of life. Minor, but consequential, changes in this DNA coding can change gene function. Researchers have long sought better ways to edit the genetic code in cultured cells and laboratory organisms to silence, activate, or change targeted genes to gain a better understanding of their roles. This, in turn, could open the door to beneficial applications, from ecological to agricultural to biomedical. Over the years, several editing methods have been developed, but they have suffered from a lack of specificity, difficulty in assembling the molecular constituents, or concerns about off-target effects. Recently, accomplishments in genome editing across biological disciplines have been so remarkable that the method known as clustered regularly interspaced short palindromic repeats—or CRISPR—is Science 's 2015 Breakthrough of the Year (see p. 1456).

Keywords

Genome, Gene Targeting, Animals, Humans, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Genetic Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 1%
hybrid