Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Footprinting the Sites of Interaction of Antibiotics with Catalytic Group I Intron RNA

Authors: U, von Ahsen; H F, Noller;

Footprinting the Sites of Interaction of Antibiotics with Catalytic Group I Intron RNA

Abstract

Aminoglycoside inhibitors of translation have been shown previously to inhibit in vitro self-splicing by group I introns. Chemical probing of the phage T4-derived sunY intron shows that neomycin, streptomycin, and related antibiotics protected the N-7 position of G96, a universally conserved guanine in the binding site for the guanosine cofactor in the splicing reaction. The antibiotics also disrupted structural contacts that have been proposed to bring the 5′ cleavage site of the intron into proximity to the catalytic core. In contrast, the strictly competitive inhibitors deoxyguanosine and arginine protected only the N-7 position of G96. Parallels between these results and previously observed protection of 16 S ribosomal RNA by aminoglycosides raise the possibility that group I intron splicing and transfer RNA selection by ribosomes involve similar RNA structural motifs.

Related Organizations
Keywords

Binding Sites, Base Sequence, RNA Splicing, Molecular Sequence Data, Introns, Anti-Bacterial Agents, Aminoglycosides, Mutation, Tetrahymena, Animals, Nucleic Acid Conformation, RNA, Catalytic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!