
pmid: 4012322
The binding of dioxygen and carbon monoxide to heme proteins such as myoglobin and hemoglobin has been studied with flash photolysis. At temperatures below 200 K, binding occurs from within the heme pocket and, contrary to expectation, with nearly equal rates for both ligands. This observation has led to a reexamination of the theory of the association reaction taking into account friction, protein structure, and the nature of electronic transitions. The rate coefficients for the limiting cases of large and small friction are found with simple arguments that use characteristic lengths and times. The arguments indicate how transition state theory as well as calculations based on nonadiabatic perturbation theory, which is called the Golden Rule, may fail. For ligand-binding reactions the data suggest the existence of intermediate states not directly observed so far. The general considerations may also apply to other biomolecular processes such as electron transport.
Hemeproteins, Carbon Monoxide, Spectrophotometry, Infrared, Myoglobin, Spectrum Analysis, Raman, Oxygen, Hemoglobins, Kinetics, Humans, Thermodynamics, Mathematics
Hemeproteins, Carbon Monoxide, Spectrophotometry, Infrared, Myoglobin, Spectrum Analysis, Raman, Oxygen, Hemoglobins, Kinetics, Humans, Thermodynamics, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 472 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
