
pmid: 3310236
Theoretical chemistry, as implemented on fast computers, is beginning to yield accurate predictions of the thermodynamic and kinetic properties of large molecular assemblies. In addition to providing detailed insights into the origins of molecular activity, theoretical calculations can be used to design new molecules with specific properties. This article describes two types of calculations that show special promise as design tools, the thermodynamic cycle-perturbation method and the Brownian reactive dynamics method. These methods can be applied to calculate equilibrium and rate constants that describe many aspects of molecular recognition, stability, and reactivity.
Diffusion, Chemistry, Kinetics, Computers, Electrochemistry, Thermodynamics
Diffusion, Chemistry, Kinetics, Computers, Electrochemistry, Thermodynamics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 131 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
