Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homogeneous Catalysis in Supercritical Fluids

Authors: P. G. Jessop; T. Ikariya; R. Noyori;

Homogeneous Catalysis in Supercritical Fluids

Abstract

Supercritical fluids (SCFs), compounds heated and pressurized beyond the critical point, have many unusual properties. Homogeneous molecular catalysts, which have far greater control over selectivity than heterogeneous solid catalysts, are now being tested in SCFs, and early results show that high rates, improved selectivity, and elimination of mass-transfer problems can be achieved. As industry moves away from toxic or environmentally damaging solvents, supercritical carbon dioxide may be an ideal replacement medium for nonpolar or weakly polar chemical processes. More than simply substitutes for nonpolar solvents, SCFs can radically change the observed chemistry. Supercritical carbon dioxide is also an excellent medium for its own fixation, as demonstrated by studies of its hydrogenation.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    822
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
822
Top 1%
Top 0.1%
Top 1%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!