Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
License: CC 0
Data sources: UnpayWall
Science
Article . 1989 . Peer-reviewed
Data sources: Crossref
Science
Article . 1989
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol Inhibits NMDA-Activated Ion Current in Hippocampal Neurons

Authors: D M, Lovinger; G, White; F F, Weight;

Ethanol Inhibits NMDA-Activated Ion Current in Hippocampal Neurons

Abstract

The ion current induced by the glutamate receptor agonist N -methyl-D-aspartate (NMDA) in voltage-clamped hippocampal neurons was inhibited by ethanol (EtOH). Inhibition increased in a concentration-dependent manner over the range 5 to 50 m M , a range that also produces intoxication. The amplitude of the NMDA-activated current was reduced 61 percent by 50 m M EtOH; in contrast, this concentration of EtOH reduced the amplitude of current activated by the glutamate receptor agonists kainate and quisqualate by only 18 and 15 percent, respectively. The potency for inhibition of the NMDA-activated current by several alcohols is linearly related to their intoxicating potency, suggesting that alcohol-induced inhibition of responses to NMDA receptor activation may contribute to the neural and cognitive impairments associated with intoxication.

Keywords

Neurons, Aspartic Acid, Oxadiazoles, Kainic Acid, N-Methylaspartate, Ethanol, Butanols, Methanol, Electric Conductivity, Membrane Proteins, Quisqualic Acid, Hippocampus, Ion Channels, 1-Butanol, Pentanols, Chlorides, Receptors, Glutamate, Chloride Channels, Humans, Calcium Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 140
    download downloads 60
  • 140
    views
    60
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1K
Top 1%
Top 0.1%
Top 0.1%
140
60
hybrid