
pmid: 17737288
Semiclassical theory finds use in chemical physics both as a computational method and as a conceptual framework for interpreting quantum features in experiments and in numerical quantum calculations. The semiclassical description of one-dimensional dynamical systems is essentially a solved problem for eigenvalue and scattering situations and for general topologies of potential functions (simple potential wells, multiple wells, multiple barriers, and so forth). Considerable progress has also been made in generalizing semiclassical theory to multidimensional dynamical systems (such as inelastic and reactive scattering of atoms and molecules and vibrational energy levels of polyatomic molecules), and here, too, it provides a useful picture of quantum features (interference in product state distribution, generalized tunneling phenomena, and others) in these more complex systems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
