Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Specificity of the anaphase-promoting complex: A single-molecule study

Authors: Marc W. Kirschner; Ying Lu; Weiping Wang;

Specificity of the anaphase-promoting complex: A single-molecule study

Abstract

Single-molecule assay of ubiquitylation Many biological processes in cells are regulated by ubiquitin peptides that are attached to proteins. Measurement of single fluorescent molecules in cell extracts can be used to trace the kinetics of such reactions. Lu et al. refined assay conditions to follow ubiquitination by an E3 ubiquitin ligase (see the Perspective by Komander). They visualized the activity of the anaphase-promoting complex (APC), a ubiquitin ligase critical for control of the cell division cycle. The processive initial reaction catalyzed by the APC was replaced by slower reactions. The results show how small, commonly occurring recognition motifs can guide specific and highly controlled enzymatic events. In a companion paper, Lu et al. explored how the number and arrangement of added ubiquitin chains affected the interaction of ubiquitylated proteins with the proteasome (a protein complex that recognizes ubiquitylated proteins and degrades them). The extent of ubiquitylation determined the strength of interaction of a substrate protein with the proteasome, and the arrangement of the ubiquitin chains determined the movement of the protein into the proteasome and thus the rate of degradation. Science , this issue 10.1126/science.1248737 , 10.1126/science.1250834 ; see also p. 183

Keywords

Feedback, Physiological, Ubiquitin, Cell Cycle, Ubiquitination, SMN Complex Proteins, Cyclin A, Cyclin B, Anaphase-Promoting Complex-Cyclosome, Fluorescence, Substrate Specificity, Kinetics, Humans, Protein Interaction Domains and Motifs, Fluorescent Dyes, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
bronze