Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2013 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2013
Data sources: Datacite
Science
Article . 2013
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Caspase-11 Protects Against Bacteria That Escape the Vacuole

Authors: Youssef, Aachoui; Irina A, Leaf; Jon A, Hagar; Mary F, Fontana; Cristine G, Campos; Daniel E, Zak; Michael H, Tan; +4 Authors

Caspase-11 Protects Against Bacteria That Escape the Vacuole

Abstract

Caspase-11–Dependent Pyroptosis Inflammasomes are multiprotein complexes that assemble to initiate immunity to a variety of microorganisms, as well as to sterile tissue injury. Although a role for caspase-1 downstream of inflammasomes is well characterized, the discovery that caspase-1 knockout mice were also deficient in caspase-11 has led to a reassessment of the function of caspase-11. Aachoui et al. (p. 975 , published online 24 January; see the Perspective by Cemma and Brumell ) now demonstrate that caspase-11 is required for immunity against cytosolic bacteria in mice. Only bacteria that were able to access cytosol-activated caspase-11–dependent pyroptosis, an inflammatory type of cell death. This function of caspase-11 appeared to be independent of canonical inflammasomes.

Keywords

Salmonella typhimurium, Salmonella Infections, Animal, Burkholderia pseudomallei, Cell Death, Burkholderia, Inflammasomes, Macrophages, Burkholderia Infections, Caspases, Initiator, Immunity, Innate, Mice, Inbred C57BL, Mice, Cytosol, Caspases, Phagosomes, Vacuoles, Animals, Gram-Negative Bacterial Infections

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    485
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
485
Top 0.1%
Top 1%
Top 0.1%
bronze