
Delaying Quantum Choice Photons can display wavelike or particle-like behavior, depending on the experimental technique used to measure them. Understanding this duality lies at the heart of quantum mechanics. In two reports, Peruzzo et al. (p. 634 ) and Kaiser et al. (p. 637 ; see the Perspective on both papers by Lloyd ) perform an entangled version of John Wheeler's delayed-choice gedanken experiment, in which the choice of detection can be changed after a photon passes through a double-slit to avoid the measurement process affecting the state of the photon. The original proposal allowed the wave and particle nature of light to be interchanged after the light had entered the interferometer. By contrast in this study, entanglement allowed the wave and particle nature to be interchanged after the light was detected and revealed the quantum nature of the photon, for example, it displays wave- and particle-like behavior simultaneously.
Quantum Physics, /dk/atira/pure/core/keywords/qetlabs, 500, FOS: Physical sciences, name=QETLabs, Quantum Physics (quant-ph), 530
Quantum Physics, /dk/atira/pure/core/keywords/qetlabs, 500, FOS: Physical sciences, name=QETLabs, Quantum Physics (quant-ph), 530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 210 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
