
Tunable Metamaterials The electromagnetic response of metamaterials gives rise to exciting phenomena such as cloaking, negative refraction, and perfect lensing. Their response, however, tends to depend strongly on resonant effects, thereby limiting the application bandwidth. Driscoll et al. (p. 1518 , published online 20 August) combine a split ring resonator array with the phase change material, VO 2 , to form a metamaterial in which the response can be tuned. The heat-induced phase change of VO 2 from an insulator to a metal alters the response of split-ring resonator, and, because it displays a hysteresis, the device can retain a “memory” of the induced change. The results may lead to a flexible method for achieving metamaterials operating over a wide bandwidth and to novel switching applications.
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 806 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
