
The ensemble of now more than 250 discovered planetary systems displays a wide range of masses, orbits and, in multiple systems, dynamical interactions. These represent the end point of a complex sequence of events, wherein an entire protostellar disk converts itself into a small number of planetary bodies. Here, we present self-consistent numerical simulations of this process, which produce results in agreement with some of the key trends observed in the properties of the exoplanets. Analogs to our own solar system do not appear to be common, originating from disks near the boundary between barren and (giant) planet-forming.
Astrophysics (astro-ph), 500, FOS: Physical sciences, Astrophysics, 520
Astrophysics (astro-ph), 500, FOS: Physical sciences, Astrophysics, 520
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 130 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
