
The theory of second-order phase transitions is one of the foundations of modern statistical mechanics and condensed-matter theory. A central concept is the observable order parameter, whose nonzero average value characterizes one or more phases. At large distances and long times, fluctuations of the order parameter(s) are described by a continuum field theory, and these dominate the physics near such phase transitions. We show that near second-order quantum phase transitions, subtle quantum interference effects can invalidate this paradigm, and we present a theory of quantum critical points in a variety of experimentally relevant two-dimensional antiferromagnets. The critical points separate phases characterized by conventional “confining” order parameters. Nevertheless, the critical theory contains an emergent gauge field and “deconfined” degrees of freedom associated with fractionalization of the order parameters. We propose that this paradigm for quantum criticality may be the key to resolving a number of experimental puzzles in correlated electron systems and offer a new perspective on the properties of complex materials.
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
