Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation

Authors: Yury, Kovalchuk; Eric, Hanse; Karl W, Kafitz; Arthur, Konnerth;

Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation

Abstract

Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca 2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca 2+ channels and N -methyl- d -aspartate receptors and was prevented by the blockage of postsynaptic Ca 2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca 2+ signaling supports this conclusion.

Related Organizations
Keywords

Neurons, Mice, Inbred BALB C, Patch-Clamp Techniques, Brain-Derived Neurotrophic Factor, Long-Term Potentiation, Perforant Pathway, Action Potentials, Excitatory Postsynaptic Potentials, Dendrites, In Vitro Techniques, Receptors, N-Methyl-D-Aspartate, Axons, Mice, Dentate Gyrus, Synapses, Animals, Receptor, trkB, Calcium, Calcium Signaling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    419
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
419
Top 1%
Top 1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!