
Photonic topological insulators (PTIs) have been proposed as an analogy to topological insulators in electronic systems. In particular, two-dimensional PTIs have gained attention for the integrated circuit applications. However, controlling the topological phase after fabrication is difficult because the photonic topology requires the built-in specific structures. This study experimentally demonstrates the band inversion in two-dimensional PTI induced by the phase transition of deliberately designed nanopatterns of a phase change material, Ge 2 Sb 2 Te 5 (GST), which indicates the first observation of the photonic topological phase transition in two-dimensional PTI with changes in the Chern number. This approach allows us to directly alter the topological invariants, which is achieved by symmetry-breaking perturbation through GST nanopatterns with different symmetry from original PTI. The success of our scheme is attributed to the ultrafine lithographic alignment technologies of GST nanopatterns. These results demonstrate how to control photonic topological properties in a reconfigurable manner, providing insight into the possibilities for reconfigurable photonic processing circuits.
FOS: Physical sciences, Optics, Physical and Materials Sciences, Optics (physics.optics)
FOS: Physical sciences, Optics, Physical and Materials Sciences, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
