Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Specificity of Metabotropic Glutamate Receptor 2 Coupling to G Proteins

Authors: Paul J. Kammermeier; Margaret I. Davis; Stephen R. Ikeda;

Specificity of Metabotropic Glutamate Receptor 2 Coupling to G Proteins

Abstract

Metabotropic glutamate receptor 2 (mGluR2) is a class 3 G protein-coupled receptor and an important mediator of synaptic activity in the central nervous system. Previous work demonstrated that mGluR2 couples to pertussis toxin (PTX)-sensitive G proteins. However, the specificity of mGluR2 coupling to individual members of the G(i/o) family is not known. Using heterologously expressed mGluR2 in rat sympathetic neurons from the superior cervical ganglion (SCG), the mGluR2/G protein coupling profile was characterized by reconstituting coupling in PTX-treated cells expressing PTX-insensitive mutant Galpha proteins and Gbetagamma. By employing this method, it was demonstrated that mGluR2 coupled strongly with Galphaob, Galphai1, Galphai2, and Galphai3, although coupling to Galphaoa was less efficient. In addition, mGluR2 did not seem to couple to the most divergent member of the G(i/o) family, Galphaz, although Galphaz coupled strongly to the endogenous alpha2 adrenergic receptor. To determine which Galpha proteins may be natively expressed in SCG neurons, the presence of mRNA for various Galpha proteins was tested using reverse transcription-polymerase chain reaction. Strong bands were detected for all members of the G(i/o) family (Galphao, Galphai1, Galphai2, Galphai3, Galphaz) as well as for Galpha11 and Galphas. A weak signal was detected for Galphaq and no Galpha15 mRNA was detected.

Keywords

Neurons, Sequence Homology, Amino Acid, Molecular Sequence Data, Superior Cervical Ganglion, GTP-Binding Protein alpha Subunits, Gi-Go, Receptors, Metabotropic Glutamate, Rats, Electrophysiology, Pertussis Toxin, GTP-Binding Proteins, Animals, Calcium, Amino Acid Sequence, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?