Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a [3H]Ligand for the Common Allosteric Site of Muscarinic Acetylcholine M2 Receptors

Authors: C, Tränkle; E, Mies-Klomfass; M H, Cid; U, Holzgrabe; K, Mohr;

Identification of a [3H]Ligand for the Common Allosteric Site of Muscarinic Acetylcholine M2 Receptors

Abstract

Muscarinic acetylcholine receptors bind allosteric modulators at a site apart from the orthosteric site used by conventional ligands. We tested in cardiac tissue whether modulator binding to ligand-occupied muscarinic M2 receptors is a preferential event that can be detected using a radioactive allosteric agent. The newly synthesized dimethyl-W84 (N,N'-bis[3-(1,3-dihydro-1, 3-dioxo-4-methyl-2H-isoindol-2-yl)propyl]-N,N,N',N'-tetramethyl-1, 6-hexanediaminium diiodide) has a particular high potency at M2 receptors occupied by the conventional antagonist N-methylscopolamine (NMS); dissociation of [3H]NMS is half-maximally retarded at an EC50,diss value of 3 nM. Using obidoxime as an "allosteric antagonist," evidence was found that dimethyl-W84 interacts with the postulated common allosteric site. Binding of [3H]dimethyl-W84 (0.3 nM; specific activity, 168 Ci/mmol) was measured in porcine heart homogenates (4 mM Na2HPO4, 1 mM KH2PO4, pH 7.4, 23 degrees) in the presence of 1 microM NMS. Homologous competition experiments revealed two components of saturable radioligand binding: one with a high affinity (KD = 2 nM) and small capacity ( approximately 30% of total saturable binding) and the other with a 20,000-fold lower affinity. The Bmax value of the high affinity sites (68 fmol/mg protein) matched muscarinic receptor density as determined by [3H]NMS (79 fmol/mg). Prototype allosteric agents, alcuronium, W84 (the parent compound of the radioligand), and gallamine, displaced high affinity [3H]dimethyl-W84 binding concentration-dependently (pKi values = 8.62, 7.83, and 6.72, respectively). The binding affinities of the modulators were in excellent correlation with their potencies to allosterically stabilize NMS/receptor complexes (EC50,diss = 8.40, 7.72, and 6.74, respectively). We conclude that high affinity binding of [3H]dimethyl-W84 reflects occupation of the common allosteric site of M2 receptors.

Related Organizations
Keywords

Cholinesterase Reactivators, Receptor, Muscarinic M2, Obidoxime Chloride, Dose-Response Relationship, Drug, Swine, Myocardium, Parasympatholytics, Heart, Phthalimides, Isoindoles, N-Methylscopolamine, Ligands, Receptors, Muscarinic, Animals, Drug Interactions, Radiopharmaceuticals, Allosteric Site

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!