Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergistic Regulation of β2-Adrenergic Receptor Sequestration: Intracellular Complement of β-Adrenergic Receptor Kinase and β-Arrestin Determine Kinetics of Internalization

Authors: Luc Ménard; Stephen S.G. Ferguson; Jie Zhang; Fang-Tsyr Lin; Robert J. Lefkowitz; Marc G. Caron; Larry S. Barak;

Synergistic Regulation of β2-Adrenergic Receptor Sequestration: Intracellular Complement of β-Adrenergic Receptor Kinase and β-Arrestin Determine Kinetics of Internalization

Abstract

Two of the common mechanisms regulating G protein-coupled receptor (GPCR) signal transduction are phosphorylation and sequestration (internalization). Agonist-mediated receptor phosphorylation by the beta-adrenergic receptor kinase (betaARK) facilitates subsequent interaction with an arrestin protein, resulting in receptor desensitization. Studies of the beta2-adrenergic receptor (beta2AR) receptor in human embryonic kidney (HEK) 293 cells indicate that betaARK and arrestin proteins (beta-arrestins) also regulate sequestration. Consistent with this notion, we show in HEK 293 cells that reduction in or removal of the ability of the beta2AR to be phosphorylated by betaARK or to interact normally with beta-arrestin substantially reduces agonist-mediated sequestration. To evaluate betaARK and beta-arrestin regulation of beta2AR sequestration, we examined the relationship between betaARK and/or beta-arrestin expression and beta2AR sequestration in a variety of cultured cells, including HEK 293, COS 7, CHO, A431, and CHW. COS cells had both the lowest levels of endogenous beta-arrestin expression and beta2AR sequestration, whereas HEK 293 had the highest. Overexpression of beta-arrestin, but not betaARK, in COS cells increased the extent of wild-type beta2AR sequestration to levels observed in HEK 293 cells. However, a betaARK phosphorylation-impaired beta2AR mutant (Y326A) required the simultaneous overexpression of both betaARK and beta-arrestin for this to occur. Among all cell lines, sequestration correlated best with the product of betaARK and beta-arrestin expression. Moreover, an agonist-mediated translocation of wild-type beta2AR and endogenous beta-arrestin 2 to endocytic vesicles prepared from CHO fibroblasts was observed. These data suggest not only that the complement of cellular betaARK and arrestin proteins synergistically regulate beta2AR sequestration but also that beta-arrestins directly regulate beta2AR trafficking as well as desensitization.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    208
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
208
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!