Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Context-Dependent Pharmacology Exhibited by Negative Allosteric Modulators of Metabotropic Glutamate Receptor 7

Authors: Niswender, C.M.; Johnson, Katherine; Miller, Robert; Ayala, J.E.; Luo, He-Kuan; Williams, Richard; Saleh, S.; +3 Authors

Context-Dependent Pharmacology Exhibited by Negative Allosteric Modulators of Metabotropic Glutamate Receptor 7

Abstract

Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323:147-156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[ 4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein G alpha(15). Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative cooperativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous G(i/o)-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native G(i/o) signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.

Country
United Kingdom
Related Organizations
Keywords

/dk/atira/pure/subjectarea/asjc/1300/1313, Male, /dk/atira/pure/subjectarea/asjc/3000/3004, 610, Down-Regulation, Excitatory Postsynaptic Potentials, name=Pharmacology, Receptors, Metabotropic Glutamate, Cell Line, Rats, Rats, Sprague-Dawley, Allosteric Regulation, 615, Cricetinae, name=Molecular Medicine, Animals, Humans, Excitatory Amino Acid Antagonists, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
bronze