Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms

Authors: Jiansong, Luo; John M, Busillo; Jeffrey L, Benovic;

M3 Muscarinic Acetylcholine Receptor-Mediated Signaling Is Regulated by Distinct Mechanisms

Abstract

We have used RNA interference previously to demonstrate that G protein-coupled receptor kinase 2 (GRK2) regulates endogenously expressed H1 histamine receptor in human embryonic kidney 293 cells. In this report, we investigate the regulation of endogenously expressed M(3) muscarinic acetylcholine receptor (M(3) mAChR). We show that knockdown of GRK2, GRK3, or GRK6, but not GRK5, significantly increased carbachol-mediated calcium mobilization. Stable expression of wild-type GRK2 or a kinase-dead mutant (GRK2-K220R) reduced calcium mobilization after receptor activation, whereas GRK2 mutants defective in Galpha(q) binding (GRK2-D110A, GRK2-R106A, and GRK2-R106A/K220R) had no effect on calcium signaling, suggesting that GRK2 primarily regulates G(q) after M(3) mAChR activation. The knockdown of arrestin-2 or arrestin-3 also significantly increased carbachol-mediated calcium mobilization. Knockdown of GRK2 and the arrestins also significantly enhanced carbachol-mediated activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), whereas prolonged ERK1/2 activation was only observed with GRK2 or arrestin-3 knockdown. We also investigated the role of casein kinase-1alpha (CK1alpha) and found that knockdown of CK1alpha increased calcium mobilization but not ERK activation. In summary, our data suggest that multiple proteins dynamically regulate M(3) mAChR-mediated calcium signaling, whereas GRK2 and arrestin-3 play the primary role in regulating ERK activation.

Related Organizations
Keywords

Receptor, Muscarinic M3, Humans, Calcium Signaling, Muscarinic Antagonists, Muscarinic Agonists, Cell Line, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 10%
Top 10%
Top 1%
bronze