
doi: 10.1123/mcj.1.1.44
handle: 1871/21614
We investigated the 1:1 frequency locking of two hand-held pendulums oscillated parallel to the body's coronal plane. In this configuration, anti-phase defined muscularly is in-phase defined spatially, and vice versa. Coordination equilibria measured by average relative phase were shifted less from muscular anti-phase than from muscular in-phase by detuning (unequal uncoupled pendulum frequencies) and were shifted less in both modes with vision than without. Variability of the equilibria, however, was ordered opposite to their degrees of shift and was unaffected by vision. Demonstrated subcritical pitchfork and tangent bifurcations conformed to the variability classification of anti- and in-phase coordination. Implications for dynamical models, hierarchical control, and definitions of coordination modes were discussed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
