
doi: 10.1122/1.551014
A hypothesis for fiber–fiber interaction in planar randomly oriented concentrated fiber suspensions is proposed and tested. The idea is that at sufficiently high fiber concentrations, friction and lubrication at fiber–fiber contact points are the dominant interaction mechanisms. A fiber pull-out technique is introduced to measure the force per unit fiber length on a single longitudinally moving fiber embedded in a volume of bulk suspension. By varying both the fiber velocity and the fiber volume fraction, the lubrication and frictional components of the force are identified. Furthermore, the corresponding bulk shear viscosity resulting from the same mechanisms is derived and compared with experimental data. The results support the hypothesis.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
