Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finding the impedance of the organ of Corti

Authors: G, Zweig;

Finding the impedance of the organ of Corti

Abstract

Measurements of the nonlinear response of the basilar membrane to a pure tone are shown to have a simple form for moderate membrane velocities: V(x,f;Vu)/Vu≈[Ṽ(x,f)/Vu]ν(x,f), f⩽fc(x), where the response V is the velocity of the membrane at measurement position x, Vu is the umbo velocity, f is the frequency of the stimulus, and fc(x) is the local characteristic frequency. The frequency dependence of the functions ν(x,f) and Ṽ(x,f) is determined from the data, and ν(x,f) and ln Ṽ(x,f) are shown to be analytic functions in the lower half of the complex frequency plane, with Re{ν(x,f)} a monotonically increasing function of f at fixed x. The linear limit of basilar membrane motion is characterized by a transfer function T(x,f)=(Ṽ/V1)ν/(1−ν), estimated by extrapolating V(x,f;Vu)/Vu to a small membrane velocity V1. T(x,f) and ln T(x,f) are shown to be analytic functions in the lower half of the complex frequency plane. The inverse of the amplitude of the transfer function, which has both a deep dip at f≈fc(x) and a broad shoulder at lower frequencies, bears a striking resemblance to the neural threshold tuning curve. The functional form of T(x,f) is used to deduce the equation governing the motion of a section of the organ of Corti. Each section acts like a negatively damped harmonic oscillator stabilized at time t by a feedback force proportional to the velocity at the previous time t−τ. The time delay τ is proportional to the oscillator period [τ=1.75/fc(x)]. Like a laser, the organ of Corti pumps energy into harmonic traveling waves. Unlike the laser, the direction of energy flow abruptly reverses as the traveling wave approaches the point of maximum membrane velocity [fc(x)≈f]. All accumulated wave energy is then pumped back into a small section of the organ of Corti where transduction presumably occurs. Outer hair cells are conjectured to be active elements contributing to the negative damping and feedback of the cochlear amplifier.

Related Organizations
Keywords

Electrophysiology, Mammals, Sound, Hearing, Animals, Models, Biological, Organ of Corti, Basilar Membrane, Biomechanical Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    189
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
189
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!