
doi: 10.1121/1.397693
pmid: 2921421
Previous work has indicated that a modified Quate-Lemons scanning acoustic microscope (SAM) is capable of measuring the acoustic propagation properties of sections of biological tissue. The lens is excited by an impulse, rather than a tone burst, and the undemodulated returning signal from the tissue is recorded. The variations in received signal with time are used to deduce the sound speed, attenuation, impedance, and section thickness. In this article, the technique is applied to various types of tissue, and the variations in acoustic propagation properties are computed. Conventional tone burst SAM images at 425 MHz are compared with the time resolved data in order to elucidate the contrast mechanisms. The effects of varying the frequency and position of the focal plane on the tone burst images are interpreted in the light of the broadband results.
Diagnostic Imaging, Microscopy, Hybridomas, Muscles, Acoustics, Bone and Bones, Elasticity, Mice, Adipose Tissue, Animals
Diagnostic Imaging, Microscopy, Hybridomas, Muscles, Acoustics, Bone and Bones, Elasticity, Mice, Adipose Tissue, Animals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
