
doi: 10.1121/1.2011411
pmid: 16266183
We consider a novel approach to the problem of detecting phonological objects like phonemes, syllables, or words, directly from the speech signal. We begin by defining local features in the time-frequency plane with built in robustness to intensity variations and time warping. Global templates of phonological objects correspond to the coincidence in time and frequency of patterns of the local features. These global templates are constructed by using the statistics of the local features in a principled way. The templates have clear phonetic interpretability, are easily adaptable, have built in invariances, and display considerable robustness in the face of additive noise and clutter from competing speakers. We provide a detailed evaluation of the performance of some diphone detectors and a word detector based on this approach. We also perform some phonetic classification experiments based on the edge-based features suggested here.
Sound Spectrography, Time Factors, Databases, Factual, Models, Biological, Speech Acoustics, Acoustic Stimulation, ROC Curve, Speech Production Measurement, Phonetics, Speech Perception, Humans, Noise, Algorithms
Sound Spectrography, Time Factors, Databases, Factual, Models, Biological, Speech Acoustics, Acoustic Stimulation, ROC Curve, Speech Production Measurement, Phonetics, Speech Perception, Humans, Noise, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
