Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inner hair cell loss and steady-state potentials from the inferior colliculus and auditory cortex of the chinchilla

Authors: Robert Burkard; Sally A. Arnold;

Inner hair cell loss and steady-state potentials from the inferior colliculus and auditory cortex of the chinchilla

Abstract

Steady-state evoked potentials were measured from unanesthetized chinchillas both before and after carboplatin-induced selective inner hair cell loss. Recordings were made from both the inferior colliculus (IC) and the auditory cortex (AC). The steady-state potential was measured in the form of the envelope following response (EFR), obtained by presenting a two-tone stimulus (f1=2000 Hz; f2=2020, 2040, 2080, 2160, or 2320 Hz), and measuring the magnitude of the Fourier coefficient at the f2–f1 difference frequency. From the IC, precarboplatin, EFR amplitude vs difference tone frequency showed a bandpass pattern, with maximum amplitude at either 160 or 80 Hz, depending upon stimulus level. Postcarboplatin, the preferred difference frequency was 80 Hz for all stimulus levels. From the AC, EFR amplitude versus difference tone frequency also showed a bandpass pattern, with the maximum amplitude at 80 Hz both pre- and postcarboplatin. EFR amplitude from the IC was decreased for some conditions postcarboplatin, while the amplitude from the AC showed no significant change.

Keywords

Auditory Cortex, Auditory Pathways, Hair Cells, Auditory, Inner, Fourier Analysis, Cell Count, Synaptic Transmission, Inferior Colliculi, Carboplatin, Pitch Discrimination, Chinchilla, Evoked Potentials, Auditory, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!