Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation

Authors: Santiago Pérez-Hoyos; Ricardo Hueso; Agustín Sánchez-Lavega;

Clouds in planetary atmospheres: A useful application of the Clausius–Clapeyron equation

Abstract

The Clausius–Clapeyron equation is used to do a comparative study of the properties of the clouds that form in planetary atmospheres. Simple static atmospheric models for various planets, the satellite Titan, and the extrasolar planet HD209458b are used together with the saturation vapor pressure curves of the different kinds of molecules to determine the pressure, density, and scale height of the clouds in each body. This application of the Clausius–Clapeyron equation extends our knowledge of terrestrial water clouds to different exotic clouds present in other planets.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?