Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 1992 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Medical Physics
Article . 1993
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbeam radiation therapy

Authors: D N, Slatkin; P, Spanne; F A, Dilmanian; M, Sandborg;

Microbeam radiation therapy

Abstract

It is proposed to carry out radiotherapy and radiosurgery for brain lesions by crossfiring an array of parallel, closely spaced microbeams of synchrotron‐generated x rays several times through an isocentric target, each microbeam in the array having an ≊25‐μm‐wide adjustable‐height rectangular cross section. The following inferences from the known tissue sparing of 22‐MeV deuteron microbeams in the mouse brain and the following exemplary Monte Carlo computations indicate that endothelial cells in the brain that are lethally irradiated by any microbeam in an array of adequately spaced microbeams outside an isocentric target will be replaced by endothelial cells regenerated from microscopically contiguous, minimally irradiated endothelium in intermicrobeam segments of brain vasculature. Endothelial regeneration will prevent necrosis of the nontargeted parenchymal tissue. However, neoplastic and/or nonneoplastic targeted tissues at the isocenter will be so severely depleted of potentially mitotic endothelial and parenchymal cells by multiple overlapping microbeams that necrosis will ensue. The Monte Carlo computations simulate microbeam irradiations of a 16‐cm diameter, 16‐cm‐long cylindrical human head phantom using 50‐, 100‐, and 150‐keV monochromatic x rays.

Related Organizations
Keywords

Models, Structural, Radiotherapy, High-Energy, Brain Neoplasms, Humans, Radiotherapy Dosage, Monte Carlo Method, Synchrotrons

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    279
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
279
Top 1%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!