Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Medical Physics
Article . 2014
versions View all 2 versions
addClaim

Actively triggered 4d cone‐beam CT acquisition

Authors: Martin F, Fast; Eric, Wisotzky; Uwe, Oelfke; Simeon, Nill;

Actively triggered 4d cone‐beam CT acquisition

Abstract

Purpose:4d cone‐beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after‐the‐fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward‐predicted position of the tumor.Methods:The forward‐prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM‐transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest‐wall displacement and correlating this external motion to the phase‐shifted diaphragm motion derived from the acquired images. In order to avoid EM‐induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results:With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM‐array and the EM‐transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory phase resulting in a dose of ∼1.7–2.6 mGy per respiratory phase. Further dose savings and decreases in the scanning time are possible by acquiring only a subset of all respiratory phases, for example, peak‐exhale and peak‐inhale only scans.Conclusions:This study is the first experimental demonstration of a new 4d CBCT acquisition paradigm in which imaging dose is efficiently utilized by actively triggering only those projections that are desired for the reconstruction process.

Keywords

Lung Neoplasms, Movement, Respiration, Image Processing, Computer-Assisted, Humans, Cone-Beam Computed Tomography, Four-Dimensional Computed Tomography, Artifacts, Radiation Dosage, Electromagnetic Phenomena

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!