Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Medical Physics
Article . 2008
versions View all 2 versions
addClaim

Magnetic resonance spectroscopy

Authors: Robert W, Prost;

Magnetic resonance spectroscopy

Abstract

The nuclear magnetic resonance phenomenon has given rise to both magnetic resonance imaging, which yields morphologic data, and magnetic resonance spectroscopy (MRS), which yields chemical data. In humans these data are derived principally from the resonances of the hydrogen nucleus in the low molecular weight compounds in the body. Hydrogen MRS has become a routinely used clinical tool in the brain, prostate, and breast. Other nuclei also demonstrate this phenomenon but each of these comes with additional difficulties, including low abundance, low sensitivity, and/or low chemical concentrations. The future of MRS includes a drive to higher main magnetic field strengths and new methods to create 4–5 orders of magnitude greater signal. The future of MRS is bright, but in the United States it is endangered by overuse and misuse driven by the advent of reimbursement.

Related Organizations
Keywords

Magnetic Resonance Spectroscopy, Animals, Humans, Diagnosis, Computer-Assisted, Equipment Design, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!