Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Inverse Problem

Authors: Prabahan Basu; Joseph P. Noonan;

The Inverse Problem

Abstract

2.1 Introduction Given a list of effects, the problem of determining cause has intrigued philosophers, mathematicians and engineers throughout recorded history. Problems of this type are formally referred to as inverse problems. Inverse problems pose a particularly difficult challenge: no solution is guaranteed to be unique or stable. The solution is unique only if for some reason known to the observer the given list of effects can be due to one and only one cause. We are concerned here with the inverse problem as it relates to signal and image restoration. In this context of linear time-invariant (LTI) systems, it is common to use the terms inverse problem and deconvolution interchangeably. The problem here may be stated as that of estimating the true signal given a distorted and noisy version of the true signal. 2.2 Signal Restoration In general, the goal of signal recovery is to find the best estimate of a signal that has been distorted. Although the mathematics is the same, we would like to distinguish between signal restoration and signal reconstruction. In the first problem, the research is concerned with obtaining a signal that has been distorted by a measuring device whose transfer function is available. Such a problem arises in image processing, wherein the distorting apparatus could be a lens or an image grabber. In the second problem, the scientist is faced with the challenge of reconstructing a signal from a set of its projections, generally corrupted by noise. This problem arises in spectral estimation, tomography, and image compression. In the image-compression problem, a finite subset of projections of the original signal are given, perhaps on the orthonormal cosine basis, and the original signal is desired. Generally, to go about the problem of signal recovery, a mathematical model of the signal-formation system is needed. Different models are available; simple linear models are easy to work with but do not reflect the real world. More realistic models are complex and may be used at some additional computational cost.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!