Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete Fourier Transform

Discrete Fourier Transform

Abstract

From an analytical perspective, the Fourier series represents a periodic signal as an infinite sum of multiples of the fundamental frequencies, while the Fourier transform permits an aperiodic waveform to be described as an integral sum over a continuous range of frequencies. Despite this separation by series and integral representations, in mathematical terms the Fourier series is regarded as a special case of the Fourier transform. Some of the basic definitions associated with the continuous Fourier series and transform are given in Appendix A; these definitions are extended to discrete signal samples in this chapter. The derivations here provide a conceptual framework for DFT algorithms and the associated parameters frequently quoted in the description of FFT software, and provide the background for frequency-based filtering developed in Chapter 13. 12.1 Discrete Fourier Series If the continuous signal f ( x ) is replaced by g ( x ) and the radial frequency ω 0 by its spatial counterpart u 0 (ω 0 = 2π u 0 ), and subscript p is added to mark the periodicity over (0, l ), the derivations in Appendix A, Sec. A.1 lead to the following Fourier series: (12.1) with the coefficients given in Eqs. (A.5) and (A.6) in Appendix A.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!