Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compressive Sensing and Compressive Holography

Authors: Georges T. Nehmetallah; Rola Aylo; Logan A. Williams;

Compressive Sensing and Compressive Holography

Abstract

It is well known from communication theory that for a sampled signal, the sampling rate must be greater than twice the signal bandwidth for faithful reproduction of the original signal. The concept of sampling at the Nyquist rate was postulated by Shannon in 1949; in the same year, Golay introduced the idea of artificial discrete multiplex coding in optical measurements. More than 50 years later, Candes, Tao, and Romberg and Donoho have demonstrated that signals that are sparse in a certain basis and sampled by multiplex encodings may be accurately inferred with high probability using many fewer measurements than suggested by Shannon’s sampling theorem in a process referred to as compressive sensing (CS). This section summarizes the basic concept of CS and provides an example of its application to holography. As stated by Brady et al., holography can be considered as a complex encoding of a signal (recording both the amplitude and phase) to which CS may be applied. In conventional optical imaging, only the intensities (no phase information) can be recorded, which results in rather poor measurement conditioning.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!