Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resist-based polarization monitoring with phase-shift masks at 1.35 numerical aperture: tool-to-tool comparison

Authors: Gregory McIntyre; Richard Tu; Christopher Robinson;

Resist-based polarization monitoring with phase-shift masks at 1.35 numerical aperture: tool-to-tool comparison

Abstract

Experimental results of tool-to-tool polarization comparison at hyper numerical aperture with POLARIS TM PSM Polarimetry (Polarization Affected Resist Image Sensor) are presented. Measurements of tool-to-tool variation of the Intensity in the Preferred Polarization State (IPS) are shown with two modes of operation: 1) measurement of relative IPS difference between tools, which does not require calibration with on-board metrology and 2) estimate of actual IPS measurement, which requires calibration with on-board technique. Relative tool-to-tool variation is generally more important, as it, rather than actual IPS values, determines any induced tool-to-tool CD variation. Monitoring single tool stability has been shown in previous work to remain stable to within a fraction of 1%. Tool-to-tool monitoring has additional sources of variation. The example shown illustrates matching with on-board metrology generally within 2%, but up to 4% at a maximum. Some causes of these potential variations are discussed as well as strategies to improve accuracy. The impact of metrology-induced resist burning is assessed and believed to cause uncertainty in the measurement less than 1%. Finally, a set of measurements comparing azimuthal and horizontal-vertical polarization states are shown, illustrating the capability of POLARIS TM to report the polarization behavior at arbitrary locations within the pupil. Although pupil-averaged IPS values match to the on-board technique within 1.2%, the angular resolved measurements do not necessarily match theoretical values and vary by up to 10%.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!