Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Imaging CDMAM phantom with tomosynthesis

Authors: Zhenxue Jing; Baorui Ren; Chris Ruth; Andrew P. Smith;

Imaging CDMAM phantom with tomosynthesis

Abstract

We studied the use of the mammography contrast detail phantom (CDMAM) with tomosynthesis to evaluate the performance of our system as well as to explore the application of CDMAM in 3D breast imaging. The system was Hologic's 1st generation tomosynthesis machine. CDMAM phantom plus PMMA slabs were imaged at 3 cm, 5 cm, 7 cm, and 9 cm PMMA-equivalent thickness with 11 projections per scan and the scan angle selected from 0, 15 and 28 degrees. CDMAM images were reconstructed using the back projection method, and were scored with the CDCOM automatic analysis program. The threshold thickness of each disk size was obtained with psychometric curve fitting. We first studied errors and variability associated with the results when different numbers of images were used in contrast detail analysis, then studied factors that affected CDMAM results in tomosynthesis, including the x-ray dose, the scan angle, the in-plane reconstruction pixel size, the slice-to-slice step size, the location of the CDMAM inside the PMMA slabs, and the scatter effect. This paper will present results of CDMAM performance of our tomosynthesis system, as well as their dependence on the various factors, and the comparison with 2D mammography. Additionally we will discuss the novel processing and analysis methods developed during this study, and make proposals to modify the CDMAM phantom and the CDCOM analysis program to optimize the method for 3D tomosynthesis.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?