
doi: 10.1117/12.770819
Metrics of system performance are used to assess the abilities and safety of x-ray imaging systems. The detective quantum efficiency (DQE) is used as a measure of "dose efficiency" but, when applied to fluoroscopic systems, requires a measurement of the temporal modulation transfer function (MTF) to account for the effects of system lag. It is shown that the temporal MTF is exposure-rate dependent, and hence must be measured under the specific exposure conditions of interest. We develop a small-signal approach to temporal MTF measurements using a semi-transparent moving slanted edge. Using an x-ray image intensifier-based bench-top system, we show that there is a 50% overstatement of the DQE when not properly accounting for lag. The small-signal approach is used to calculate a lag-free fluoroscopic DQE that agrees with a radiographic DQE measurement under the same exposure-rate conditions. It was found that the temporal MTF did not change within measured precision over normal fluoroscopic conditions, and the radiopaque falling-edge results were consistent with the small-signal temporal MTF. This approach could be implemented in a clinical setting with access to raw (linear or linearized) fluoroscopic image data and could be generalized for use on pulsed-exposure systems.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
