Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://mipgsun.mipg....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1117/12.709...
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CAVASS: a computer-assisted visualization and analysis software system - image processing aspects

Authors: Ying Zhuge; Shipra Mishra; Andre Souza; George J. Grevera; George J. Grevera; Jayaram K. Udupa; Tad Iwanaga; +1 Authors

CAVASS: a computer-assisted visualization and analysis software system - image processing aspects

Abstract

ABSTRACT The development of the concepts within 3DVIEWNIX and of the software system 3DVIEWNIX itself dates back to the 1970s. Since then, a series of software packages for Computer Assisted Visualization and Analysis (CAVA ) of images came out from our group, 3DVIEWNIX released in 1993, being the most recent, and all were distributed with source code. CAVASS , an open source system, is the latest in this series, and represents the next major incarnation of 3DVIEWNIX . It incorporates four groups of operations: IMAGE PROCESSING (including ROI , interpolation, filtering, segmentation, registration, morphological, and algebraic operations), VISUALIZATION (including slice display, reslicing, MIP , surface rendering, and volume rendering), MANIPULATION (for modifying structures and surgery simulation), ANALYSIS (various ways of extracting quantitative information). CAVASS is designed to work on all platforms. Its key features are: (1) most major CAVA operations incorporated; (2) very efficient algorithms and their highly efficient implementations; (3) parallelized algorithms for computationally intensive operations; (4) parallel implementation via distributed computing on a cluster of PCs; (5) interface to other systems such as CAD/CAMsoftware, ITK , and statistical packages; (6) easy to use GUI . In this paper, we focus on the image processing operations and compare the performance of CAVASS with that of ITK . Our conclusions based on assessing performance by utilizing a regular (6 MB), large (241 MB), and a super (873 MB) 3D image data set are as follows: CAVASS is considerably more efficient than ITK , especially in those operations which are computat ionally intensive. It can handle considerably larger data sets than ITK . It is easy and ready to use in appli cations since it provides an easy to use GUI . The users can easily build a cluster from ordinary inexpensive PCs and reap the full power of CAVASS inexpensively compared to expensive multiprocessing systems which are less efficient for CAVA operations. Keywords : visualization, 3D imaging, software systems, image analysis

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average