Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Potential use of a large-screen display for interpreting radiographic images

Authors: Elizabeth A. Krupinski; Hans Roehrig; Douglas A. Stanton; William G. Berger; Sandeep Dalal;

Potential use of a large-screen display for interpreting radiographic images

Abstract

Radiology has readily made the transition to the digital reading room. One commodity left behind when moving to digital displays however is display real estate. Even with multiple monitors radiologists cannot display numerous images as they did on a film alternator. We evaluated a large-screen rear-projection display (Philips Electronics) for potential use in radiology. Resolution was 1920 x 1080 with a 44-inch diagonal size and it was a color display. For comparison we used the IBM 9 Mpixel color display (22-inch diagonal) set to a comparable resolution and maximum luminance. Diagnostic accuracy with a series of bone images with subtle fractures and six observers was comparable (F = 0.3170, p = 0.5743) to traditional computer monitor. Viewing time, however, was significantly shorter (t = 6.723, p < 0.0001) with the large display for both normal and fracture images. On average, readers sat significantly closer (t = 5.578, p = 0.0026) to the small display than the large display. Four of the 6 radiologists preferred the smaller display, judging it to yield a sharper image. Half of the readers thought the black level was better with the large display and half with the small display. Most of the radiologists thought the large-screen display has potential for use in conferencing situations or those in which multiple viewers need to see images simultaneously.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!