Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulations of a rainfall process in Southeastern China with WRF and MM5

Authors: Qifeng Lu; Wei Gao; Zhiqiang Gao; Wanli Wu; Xiaoling Pan; Dajun Wang; Bingyu Du; +1 Authors

Simulations of a rainfall process in Southeastern China with WRF and MM5

Abstract

In an attempt to understand the relative strengths of two state-of-art mesoscale models: WRF (Weather Research and Forecasting Model) and Penn State/NCAR MM5, a nested domain was constructed to simulate a precipitation process induced by land-sea wind shear in Southeastern China with the two models. The results indicate that both WRF and MM5 capture the local circulation and the heavy rainfall area well, but precipitation amounts are overestimated relative to observations. The WRF model is better than the MM5 in precipitation strength, but worse in the location of maximum rainfall. In comparison with the observations, the simulation by both MM5 and WRF is larger than observation, but the simulation of WRF is closer to observation than MM5. Except that the distribution tendency of simulated wind field by MM5 is better than by WRF, the distribution trend of 2-m temperature and precipitation simulated by WRF is closer to observation than by MM5, but there exists phase difference between simulation by WRF and observation, for precipitation with lagged phase, and for temperature with phase ahead

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!