
doi: 10.1117/12.549711
We have applied the x-ray extended-range technique (XERT) to measure mass attenuation coefficients over one order of magnitude more accurately than previously reported in the literature. We describe here the application of the XERT to the investigation of a number of systematic effects which has enabled us to ensure that these recent measurements are free from systematic error. In particular we describe our techniques for quantifying the effects of harmonic components in the x-ray beam, scattering and fluorescence from the absorbing sample, the bandwidth of the x-ray beam, and thickness variations across the absorber.
0205 (four-digit-FOR), 020500 Optical Physics
0205 (four-digit-FOR), 020500 Optical Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
