Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fiber sensing with photorefractive fiber

Authors: Ruyan Guo; Francis T. S. Yu; Yuexin Liu; Bo Wang;

Fiber sensing with photorefractive fiber

Abstract

Optical fibers have been widely used for transmitting temporal signal. However, the transmission of spatial signal has not been fully exploited. Although multimode fiber has a large space-bandwidth product, transmitting spatial signals by using a fiber is rather difficult. When a laser beam is lached into a multimode fiber, the exit light field produces a complicated speckle pattern caused by the modal phasing of the fiber. It is difficult to recover the transmitted informati from the speckle field. However, the fiber speckle field can be used to fiber sensing with a hologrpahic method. In other words, if a hologram is made with the speckle fiber field, the information of the fiber status can be recovered. Thus by reading the hologram by the same speckle field, the reference beam can be reconstructed, which represents the detection of the speckle field. In other words, instead of exploiting the temporal content, the spatial content from a multimode fiber can be exploited for sensing. Our analyses and experimentations have shown that the fiber specklegram sensor (FSS) is highly senstiive to perturbation, and it is less vulnerable to the environment factors. Applications of the FSS to temperature, transversal displacement, and dynamic sensing are also included.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!