Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The research on the edge thermal effect of the thin disk crystal in thin disk lasers

Authors: Wenhan Zeng; Zhili Ma; Lu-jun Cui; Yanlong Cao; Deng Lijuan; Zheng-feng Li; Yongqian Chen; +2 Authors

The research on the edge thermal effect of the thin disk crystal in thin disk lasers

Abstract

The thin-disk shape laser crystal is the core component of the thin disk laser. In the experiment, we found that the crystal edge is prone to abnormal high temperature in the operation, which causes the thin disk laser's conversion efficiency to decrease, and even the make crystal cracks. In order to solve this problem, two aspects that may cause this effect are researched during the disc crystal manufacturing process, and finally determined that the splash of solder during the packaging process is the main cause of this problem. In the end, we used the edge chamfering method to eliminate this problem, and the finally obtained thin disk crystal can reduce the temperature by 50% and increase the conversion efficiency by 15% when the laser operates.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!