Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Institutional...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1117/12.257...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised change detection using hierarchical convolutional autoencoder

Authors: Bergamasco, Luca; Bovolo, Francesca; Bruzzone, Lorenzo;

Unsupervised change detection using hierarchical convolutional autoencoder

Abstract

Change detection (CD) benefits of the capability of deep-learning (DL) methods of exploiting complex temporal behaviors in a large amount of data. Unsupervised CD DL methods are preferred since they do not require labeled data. Unsupervised CD methods use autoencoders (AE) or convolutional AE (CAE) for CD. However, features provided by the CAE hidden layers tend to degrade the geometrical information during the encoding. To mitigate this effect, we propose an unsupervised CD exploiting a multilayer CAE trained by a hierarchical loss function. This loss function guarantees a better trade-off between noise reduction and preservation of geometrical details at each hidden layer of the CAE. On the contrary to standard CAE, the proposed novel loss function considers input/output specular pairs of multiple hidden layers. These layers are analyzed by considering encoder/decoder pairs that work at corresponding geometrical resolution and show similar spatialcontext information. Single-layer loss functions are defined by comparing the specular corresponding encoder and decoder pairs then aggregated to design a multilayer loss function. The proposed hierarchical loss function allows for a layer-by-layer control of the training and improvement of the reconstruction quality of the hidden layers that better preserves the geometrical details while reducing noise. The CD is performed by processing bi-temporal remote sensing images with the CAE. A detail-preserving multi-scale CD process exploits the most informative features for bi-temporal images to compute the change map. Preliminary experimental results conducted on a couple of Landsat-8 multitemporal images acquired before and after a fire near Granada, Spain of July 8th, 2015, provided promising results.

Keywords

Convolution autoencoder; Deep learning; Hierarchical loss function; Multi-scale change detection; Multi-temporal analysis; Unsupervised learning;

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!