
doi: 10.1117/12.2571313
handle: 11572/279256
Change detection (CD) benefits of the capability of deep-learning (DL) methods of exploiting complex temporal behaviors in a large amount of data. Unsupervised CD DL methods are preferred since they do not require labeled data. Unsupervised CD methods use autoencoders (AE) or convolutional AE (CAE) for CD. However, features provided by the CAE hidden layers tend to degrade the geometrical information during the encoding. To mitigate this effect, we propose an unsupervised CD exploiting a multilayer CAE trained by a hierarchical loss function. This loss function guarantees a better trade-off between noise reduction and preservation of geometrical details at each hidden layer of the CAE. On the contrary to standard CAE, the proposed novel loss function considers input/output specular pairs of multiple hidden layers. These layers are analyzed by considering encoder/decoder pairs that work at corresponding geometrical resolution and show similar spatialcontext information. Single-layer loss functions are defined by comparing the specular corresponding encoder and decoder pairs then aggregated to design a multilayer loss function. The proposed hierarchical loss function allows for a layer-by-layer control of the training and improvement of the reconstruction quality of the hidden layers that better preserves the geometrical details while reducing noise. The CD is performed by processing bi-temporal remote sensing images with the CAE. A detail-preserving multi-scale CD process exploits the most informative features for bi-temporal images to compute the change map. Preliminary experimental results conducted on a couple of Landsat-8 multitemporal images acquired before and after a fire near Granada, Spain of July 8th, 2015, provided promising results.
Convolution autoencoder; Deep learning; Hierarchical loss function; Multi-scale change detection; Multi-temporal analysis; Unsupervised learning;
Convolution autoencoder; Deep learning; Hierarchical loss function; Multi-scale change detection; Multi-temporal analysis; Unsupervised learning;
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
