Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of adaptive linear interpolation and conventional linear interpolation for digital radiography systems

Authors: Bennett A. Alford; Ge Wang; Hong Liu; Fang Xu;

Comparison of adaptive linear interpolation and conventional linear interpolation for digital radiography systems

Abstract

Some large field digital radiography systems are currently under development using multiple detectors. These small size two dimension detectors are abutted together to cover a large field. Physical gaps existing between adjacent detectors produce seams between the resultant subimages. In this paper, an adaptive linear interpolation algorithm was introduced for estimating missing information at the seams and was compared with conventional linear interpolation and with nonlinear interpolation. The effectiveness of the algorithms was evaluated for relative/absolute errors. Phantom images were acquired using prototype digital radiography systems. Seams with width ranging from two pixel to six pixel were introduced and adaptive linear interpolation algorithms were applied to estimate missing information at the seams. Quantitatively, the adaptive interpolation offers at least equivalent or less error than that of the linear interpolation algorithm. The experimental results prove that there is a significant difference between two algorithms for tested radiographic images. The comparison results also show that the adaptive interpolation offers better performance than nonlinear interpolation. When developing large field digital radiography imaging systems, gaps between adjacent detectors should be minimized. For narrow seams, the adaptive linear interpolation algorithm is a practical solution because of its simplicity and effectiveness.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!